Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Evaluating Generalization and Transfer Capacity of Multi-Agent Reinforcement Learning Across Variable Number of Agents (2111.14177v1)

Published 28 Nov 2021 in cs.MA, cs.AI, and cs.LG

Abstract: Multi-agent Reinforcement Learning (MARL) problems often require cooperation among agents in order to solve a task. Centralization and decentralization are two approaches used for cooperation in MARL. While fully decentralized methods are prone to converge to suboptimal solutions due to partial observability and nonstationarity, the methods involving centralization suffer from scalability limitations and lazy agent problem. Centralized training decentralized execution paradigm brings out the best of these two approaches; however, centralized training still has an upper limit of scalability not only for acquired coordination performance but also for model size and training time. In this work, we adopt the centralized training with decentralized execution paradigm and investigate the generalization and transfer capacity of the trained models across variable number of agents. This capacity is assessed by training variable number of agents in a specific MARL problem and then performing greedy evaluations with variable number of agents for each training configuration. Thus, we analyze the evaluation performance for each combination of agent count for training versus evaluation. We perform experimental evaluations on predator prey and traffic junction environments and demonstrate that it is possible to obtain similar or higher evaluation performance by training with less agents. We conclude that optimal number of agents to perform training may differ from the target number of agents and argue that transfer across large number of agents can be a more efficient solution to scaling up than directly increasing number of agents during training.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.