Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Imbalanced data preprocessing techniques utilizing local data characteristics (2111.14120v1)

Published 28 Nov 2021 in cs.LG

Abstract: Data imbalance, that is the disproportion between the number of training observations coming from different classes, remains one of the most significant challenges affecting contemporary machine learning. The negative impact of data imbalance on traditional classification algorithms can be reduced by the data preprocessing techniques, methods that manipulate the training data to artificially reduce the degree of imbalance. However, the existing data preprocessing techniques, in particular SMOTE and its derivatives, which constitute the most prevalent paradigm of imbalanced data preprocessing, tend to be susceptible to various data difficulty factors. This is in part due to the fact that the original SMOTE algorithm does not utilize the information about majority class observations. The focus of this thesis is development of novel data resampling strategies natively utilizing the information about the distribution of both minority and majority class. The thesis summarizes the content of 12 research papers focused on the proposed binary data resampling strategies, their translation to the multi-class setting, and the practical application to the problem of histopathological data classification.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. MichaƂ Koziarski (20 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.