Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Complexity and Approximability of Edge-Vertex Domination in UDG (2111.13552v3)

Published 26 Nov 2021 in cs.CG

Abstract: Given an undirected graph $G=(V,E)$, a vertex $v\in V$ is edge-vertex (ev) dominated by an edge $e\in E$ if $v$ is either incident to $e$ or incident to an adjacent edge of $e$. A set $S{ev}\subseteq E$ is an edge-vertex dominating set (referred to as \textit{ev}-dominating set and in short as \textit{EVDS}) of $G$ if every vertex of $G$ is \textit{ev}-dominated by at least one edge of $S{ev}$. The minimum cardinality of an \textit{ev}-dominating set is the \textit{ev}-domination number. The edge-vertex dominating set problem is to find a minimum \textit{ev}-domination number. In this paper, we prove that the \textit{ev}-dominating set problem is {\tt NP-hard} on unit disk graphs. We also prove that this problem admits a polynomial-time approximation scheme on unit disk graphs. Finally, we give a simple 5-factor linear-time approximation algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.