Papers
Topics
Authors
Recent
2000 character limit reached

Complexity and Approximability of Edge-Vertex Domination in UDG (2111.13552v3)

Published 26 Nov 2021 in cs.CG

Abstract: Given an undirected graph $G=(V,E)$, a vertex $v\in V$ is edge-vertex (ev) dominated by an edge $e\in E$ if $v$ is either incident to $e$ or incident to an adjacent edge of $e$. A set $S{ev}\subseteq E$ is an edge-vertex dominating set (referred to as \textit{ev}-dominating set and in short as \textit{EVDS}) of $G$ if every vertex of $G$ is \textit{ev}-dominated by at least one edge of $S{ev}$. The minimum cardinality of an \textit{ev}-dominating set is the \textit{ev}-domination number. The edge-vertex dominating set problem is to find a minimum \textit{ev}-domination number. In this paper, we prove that the \textit{ev}-dominating set problem is {\tt NP-hard} on unit disk graphs. We also prove that this problem admits a polynomial-time approximation scheme on unit disk graphs. Finally, we give a simple 5-factor linear-time approximation algorithm.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.