Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Keep It Unbiased: A Comparison Between Estimation of Distribution Algorithms and Deep Learning for Human Interaction-Free Side-Channel Analysis (2111.13425v1)

Published 26 Nov 2021 in cs.CR

Abstract: Evaluating side-channel analysis (SCA) security is a complex process, involving applying several techniques whose success depends on human engineering. Therefore, it is crucial to avoid a false sense of confidence provided by non-optimal (failing) attacks. Different alternatives have emerged lately trying to mitigate human dependency, among which deep learning (DL) attacks are the most studied today. DL promise to simplify the procedure by e.g. evading the need for point of interest selection or the capability of bypassing noise and desynchronization, among other shortcuts. However, including DL in the equation comes at a price, since working with neural networks is not straightforward in this context. Recently, an alternative has appeared with the potential to mitigate this dependence without adding extra complexity: Estimation of Distribution Algorithm-based SCA. In this paper, we compare these two relevant methods, supporting our findings by experiments on various datasets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.