Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 34 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Characteristic Neural Ordinary Differential Equations (2111.13207v4)

Published 25 Nov 2021 in cs.LG

Abstract: We propose Characteristic-Neural Ordinary Differential Equations (C-NODEs), a framework for extending Neural Ordinary Differential Equations (NODEs) beyond ODEs. While NODEs model the evolution of a latent variables as the solution to an ODE, C-NODE models the evolution of the latent variables as the solution of a family of first-order quasi-linear partial differential equations (PDEs) along curves on which the PDEs reduce to ODEs, referred to as characteristic curves. This in turn allows the application of the standard frameworks for solving ODEs, namely the adjoint method. Learning optimal characteristic curves for given tasks improves the performance and computational efficiency, compared to state of the art NODE models. We prove that the C-NODE framework extends the classical NODE on classification tasks by demonstrating explicit C-NODE representable functions not expressible by NODEs. Additionally, we present C-NODE-based continuous normalizing flows, which describe the density evolution of latent variables along multiple dimensions. Empirical results demonstrate the improvements provided by the proposed method for classification and density estimation on CIFAR-10, SVHN, and MNIST datasets under a similar computational budget as the existing NODE methods. The results also provide empirical evidence that the learned curves improve the efficiency of the system through a lower number of parameters and function evaluations compared with baselines.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.