Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear Dynamics using Deep Learning (2111.12995v1)

Published 25 Nov 2021 in cs.LG, cs.SY, and eess.SY

Abstract: Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions. Building models describing dynamics of complex processes (e.g., weather dynamics, or reactive flows) using empirical knowledge or first principles are onerous or infeasible. Moreover, these models are high-dimensional but spatially correlated. It is, however, observed that the dynamics of high-fidelity models often evolve in low-dimensional manifolds. Furthermore, it is also known that for sufficiently smooth vector fields defining the nonlinear dynamics, a quadratic model can describe it accurately in an appropriate coordinate system, conferring to the McCormick relaxation idea in nonconvex optimization. Here, we aim at finding a low-dimensional embedding of high-fidelity dynamical data, ensuring a simple quadratic model to explain its dynamics. To that aim, this work leverages deep learning to identify low-dimensional quadratic embeddings for high-fidelity dynamical systems. Precisely, we identify the embedding of data using an autoencoder to have the desired property of the embedding. We also embed a Runge-Kutta method to avoid the time-derivative computations, which is often a challenge. We illustrate the ability of the approach by a couple of examples, arising in describing flow dynamics and the oscillatory tubular reactor model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.