Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Recommending Multiple Positive Citations for Manuscript via Content-Dependent Modeling and Multi-Positive Triplet (2111.12899v1)

Published 25 Nov 2021 in cs.IR and cs.AI

Abstract: Considering the rapidly increasing number of academic papers, searching for and citing appropriate references has become a non-trial task during the wiring of papers. Recommending a handful of candidate papers to a manuscript before publication could ease the burden of the authors, and help the reviewers to check the completeness of the cited resources. Conventional approaches on citation recommendation generally consider recommending one ground-truth citation for a query context from an input manuscript, but lack of consideration on co-citation recommendations. However, a piece of context often needs to be supported by two or more co-citation pairs. Here, we propose a novel scientific paper modeling for citation recommendations, namely Multi-Positive BERT Model for Citation Recommendation (MP-BERT4CR), complied with a series of Multi-Positive Triplet objectives to recommend multiple positive citations for a query context. The proposed approach has the following advantages: First, the proposed multi-positive objectives are effective to recommend multiple positive candidates. Second, we adopt noise distributions which are built based on the historical co-citation frequencies, so that MP-BERT4CR is not only effective on recommending high-frequent co-citation pairs; but also the performances on retrieving the low-frequent ones are significantly improved. Third, we propose a dynamic context sampling strategy which captures the ``macro-scoped'' citing intents from a manuscript and empowers the citation embeddings to be content-dependent, which allow the algorithm to further improve the performances. Single and multiple positive recommendation experiments testified that MP-BERT4CR delivered significant improvements. In addition, MP-BERT4CR are also effective in retrieving the full list of co-citations, and historically low-frequent co-citation pairs compared with the prior works.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.