Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RLIBM-PROG: Progressive Polynomial Approximations for Fast Correctly Rounded Math Libraries (2111.12852v2)

Published 25 Nov 2021 in cs.MS

Abstract: This paper presents a novel method for generating a single polynomial approximation that produces correctly rounded results for all inputs of an elementary function for multiple representations. The generated polynomial approximation has the nice property that the first few lower degree terms produce correctly rounded results for specific representations of smaller bitwidths, which we call progressive performance. To generate such progressive polynomial approximations, we approximate the correctly rounded result and formulate the computation of correctly rounded polynomial approximations as a linear program similar to our prior work on the RLibm project. To enable the use of resulting polynomial approximations in mainstream libraries, we want to avoid piecewise polynomials with large lookup tables. We observe that the problem of computing polynomial approximations for elementary functions is a linear programming problem in low dimensions, i.e., with a small number of unknowns. We design a fast randomized algorithm for computing polynomial approximations with progressive performance. Our method produces correct and fast polynomials that require a small amount of storage. A few polynomial approximations from our prototype have already been incorporated into LLVM's math library.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mridul Aanjaneya (12 papers)
  2. Jay P. Lim (4 papers)
  3. Santosh Nagarakatte (12 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.