Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Differentially Private Nonparametric Regression Under a Growth Condition (2111.12786v1)

Published 24 Nov 2021 in cs.LG, cs.CR, and stat.ML

Abstract: Given a real-valued hypothesis class $\mathcal{H}$, we investigate under what conditions there is a differentially private algorithm which learns an optimal hypothesis from $\mathcal{H}$ given i.i.d. data. Inspired by recent results for the related setting of binary classification (Alon et al., 2019; Bun et al., 2020), where it was shown that online learnability of a binary class is necessary and sufficient for its private learnability, Jung et al. (2020) showed that in the setting of regression, online learnability of $\mathcal{H}$ is necessary for private learnability. Here online learnability of $\mathcal{H}$ is characterized by the finiteness of its $\eta$-sequential fat shattering dimension, ${\rm sfat}\eta(\mathcal{H})$, for all $\eta > 0$. In terms of sufficient conditions for private learnability, Jung et al. (2020) showed that $\mathcal{H}$ is privately learnable if $\lim{\eta \downarrow 0} {\rm sfat}\eta(\mathcal{H})$ is finite, which is a fairly restrictive condition. We show that under the relaxed condition $\lim \inf{\eta \downarrow 0} \eta \cdot {\rm sfat}\eta(\mathcal{H}) = 0$, $\mathcal{H}$ is privately learnable, establishing the first nonparametric private learnability guarantee for classes $\mathcal{H}$ with ${\rm sfat}\eta(\mathcal{H})$ diverging as $\eta \downarrow 0$. Our techniques involve a novel filtering procedure to output stable hypotheses for nonparametric function classes.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)