Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 26 tok/s Pro
2000 character limit reached

PSSL: Self-supervised Learning for Personalized Search with Contrastive Sampling (2111.12614v1)

Published 24 Nov 2021 in cs.IR

Abstract: Personalized search plays a crucial role in improving user search experience owing to its ability to build user profiles based on historical behaviors. Previous studies have made great progress in extracting personal signals from the query log and learning user representations. However, neural personalized search is extremely dependent on sufficient data to train the user model. Data sparsity is an inevitable challenge for existing methods to learn high-quality user representations. Moreover, the overemphasis on final ranking quality leads to rough data representations and impairs the generalizability of the model. To tackle these issues, we propose a Personalized Search framework with Self-supervised Learning (PSSL) to enhance data representations. Specifically, we adopt a contrastive sampling method to extract paired self-supervised information from sequences of user behaviors in query logs. Four auxiliary tasks are designed to pre-train the sentence encoder and the sequence encoder used in the ranking model. They are optimized by contrastive loss which aims to close the distance between similar user sequences, queries, and documents. Experimental results on two datasets demonstrate that our proposed model PSSL achieves state-of-the-art performance compared with existing baselines.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.