Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GreedyNASv2: Greedier Search with a Greedy Path Filter (2111.12609v2)

Published 24 Nov 2021 in cs.CV

Abstract: Training a good supernet in one-shot NAS methods is difficult since the search space is usually considerably huge (e.g., $13{21}$). In order to enhance the supernet's evaluation ability, one greedy strategy is to sample good paths, and let the supernet lean towards the good ones and ease its evaluation burden as a result. However, in practice the search can be still quite inefficient since the identification of good paths is not accurate enough and sampled paths still scatter around the whole search space. In this paper, we leverage an explicit path filter to capture the characteristics of paths and directly filter those weak ones, so that the search can be thus implemented on the shrunk space more greedily and efficiently. Concretely, based on the fact that good paths are much less than the weak ones in the space, we argue that the label of "weak paths" will be more confident and reliable than that of "good paths" in multi-path sampling. In this way, we thus cast the training of path filter in the positive and unlabeled (PU) learning paradigm, and also encourage a \textit{path embedding} as better path/operation representation to enhance the identification capacity of the learned filter. By dint of this embedding, we can further shrink the search space by aggregating similar operations with similar embeddings, and the search can be more efficient and accurate. Extensive experiments validate the effectiveness of the proposed method GreedyNASv2. For example, our obtained GreedyNASv2-L achieves $81.1\%$ Top-1 accuracy on ImageNet dataset, significantly outperforming the ResNet-50 strong baselines.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.