Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

TriStereoNet: A Trinocular Framework for Multi-baseline Disparity Estimation (2111.12502v2)

Published 24 Nov 2021 in cs.CV

Abstract: Stereo vision is an effective technique for depth estimation with broad applicability in autonomous urban and highway driving. While various deep learning-based approaches have been developed for stereo, the input data from a binocular setup with a fixed baseline are limited. Addressing such a problem, we present an end-to-end network for processing the data from a trinocular setup, which is a combination of a narrow and a wide stereo pair. In this design, two pairs of binocular data with a common reference image are treated with shared weights of the network and a mid-level fusion. We also propose a Guided Addition method for merging the 4D data of the two baselines. Additionally, an iterative sequential self-supervised and supervised learning on real and synthetic datasets is presented, making the training of the trinocular system practical with no need to ground-truth data of the real dataset. Experimental results demonstrate that the trinocular disparity network surpasses the scenario where individual pairs are fed into a similar architecture. Code and dataset: https://github.com/cogsys-tuebingen/tristereonet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com