Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Privacy-Preserving Biometric Matching Using Homomorphic Encryption (2111.12372v1)

Published 24 Nov 2021 in cs.CR

Abstract: Biometric matching involves storing and processing sensitive user information. Maintaining the privacy of this data is thus a major challenge, and homomorphic encryption offers a possible solution. We propose a privacy-preserving biometrics-based authentication protocol based on fully homomorphic encryption, where the biometric sample for a user is gathered by a local device but matched against a biometric template by a remote server operating solely on encrypted data. The design ensures that 1) the user's sensitive biometric data remains private, and 2) the user and client device are securely authenticated to the server. A proof-of-concept implementation building on the TFHE library is also presented, which includes the underlying basic operations needed to execute the biometric matching. Performance results from the implementation show how complex it is to make FHE practical in this context, but it appears that, with implementation optimisations and improvements, the protocol could be used for real-world applications.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.