Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

An MAP Estimation for Between-Class Variance (2111.12331v1)

Published 24 Nov 2021 in cs.SD and eess.AS

Abstract: Probabilistic linear discriminant analysis (PLDA) has been widely used in open-set verification tasks, such as speaker verification. A potential issue of this model is that the training set often contains limited number of classes, which makes the estimation for the between-class variance unreliable. This unreliable estimation often leads to degraded generalization. In this paper, we present an MAP estimation for the between-class variance, by employing an Inverse-Wishart prior. A key problem is that with hierarchical models such as PLDA, the prior is placed on the variance of class means while the likelihood is based on class members, which makes the posterior inference intractable. We derive a simple MAP estimation for such a model, and test it in both PLDA scoring and length normalization. In both cases, the MAP-based estimation delivers interesting performance improvement.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.