Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Algorithmic Fairness in Face Morphing Attack Detection (2111.12115v1)

Published 23 Nov 2021 in cs.CV

Abstract: Face morphing attacks can compromise Face Recognition System (FRS) by exploiting their vulnerability. Face Morphing Attack Detection (MAD) techniques have been developed in recent past to deter such attacks and mitigate risks from morphing attacks. MAD algorithms, as any other algorithms should treat the images of subjects from different ethnic origins in an equal manner and provide non-discriminatory results. While the promising MAD algorithms are tested for robustness, there is no study comprehensively bench-marking their behaviour against various ethnicities. In this paper, we study and present a comprehensive analysis of algorithmic fairness of the existing Single image-based Morph Attack Detection (S-MAD) algorithms. We attempt to better understand the influence of ethnic bias on MAD algorithms and to this extent, we study the performance of MAD algorithms on a newly created dataset consisting of four different ethnic groups. With Extensive experiments using six different S-MAD techniques, we first present benchmark of detection performance and then measure the quantitative value of the algorithmic fairness for each of them using Fairness Discrepancy Rate (FDR). The results indicate the lack of fairness on all six different S-MAD methods when trained and tested on different ethnic groups suggesting the need for reliable MAD approaches to mitigate the algorithmic bias.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.