Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Quantum Advantage for All (2111.12063v9)

Published 23 Nov 2021 in cs.PL

Abstract: We show that the algorithmic complexity of any classical algorithm written in a Turing-complete programming language polynomially bounds the number of quantum bits that are required to run and even symbolically execute the algorithm on a quantum computer. In particular, we show that any classical algorithm $A$ that runs in $\mathcal{O}(f(n))$ time and $\mathcal{O}(g(n))$ space requires no more than $\mathcal{O}(f(n)\cdot g(n))$ quantum bits to execute, even symbolically, on a quantum computer. With $\mathcal{O}(1)\leq\mathcal{O}(g(n))\leq\mathcal{O}(f(n))$ for all $n$, the quantum bits required to execute $A$ may therefore not exceed $\mathcal{O}(f(n)2)$ and may come down to $\mathcal{O}(f(n))$ if memory consumption by $A$ is bounded by a constant. Our construction works by encoding symbolic execution of machine code in a finite state machine over the satisfiability-modulo-theory (SMT) of bitvectors, for modeling CPU registers, and arrays of bitvectors, for modeling main memory. The FSM is linear in the size of the code, independent of execution time and space, and represents the reachable machine states for any given input. The FSM may be explored by bounded model checkers using SMT and SAT solvers as backend. However, for the purpose of this paper, we focus on quantum computing by unrolling and bit-blasting the FSM into (1)~satisfiability-preserving quadratic unconstrained binary optimization (QUBO) models targeting adiabatic forms of quantum computing such as quantum annealing, and (2)~semantics-preserving quantum circuits (QCs) targeting gate-model quantum computers. With our compact QUBOs, real quantum annealers can now execute simple but real code even symbolically, yet only with potential but no guarantee for exponential speedup, and with our QCs as oracles, Grover's algorithm applies to symbolic execution of arbitrary code, guaranteeing at least in theory a quadratic speedup.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.