Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Semi-Online Knowledge Distillation (2111.11747v1)

Published 23 Nov 2021 in cs.CV

Abstract: Knowledge distillation is an effective and stable method for model compression via knowledge transfer. Conventional knowledge distillation (KD) is to transfer knowledge from a large and well pre-trained teacher network to a small student network, which is a one-way process. Recently, deep mutual learning (DML) has been proposed to help student networks learn collaboratively and simultaneously. However, to the best of our knowledge, KD and DML have never been jointly explored in a unified framework to solve the knowledge distillation problem. In this paper, we investigate that the teacher model supports more trustworthy supervision signals in KD, while the student captures more similar behaviors from the teacher in DML. Based on these observations, we first propose to combine KD with DML in a unified framework. Furthermore, we propose a Semi-Online Knowledge Distillation (SOKD) method that effectively improves the performance of the student and the teacher. In this method, we introduce the peer-teaching training fashion in DML in order to alleviate the student's imitation difficulty, and also leverage the supervision signals provided by the well-trained teacher in KD. Besides, we also show our framework can be easily extended to feature-based distillation methods. Extensive experiments on CIFAR-100 and ImageNet datasets demonstrate the proposed method achieves state-of-the-art performance.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.