Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Sample Efficient Imitation Learning via Reward Function Trained in Advance (2111.11711v1)

Published 23 Nov 2021 in cs.LG

Abstract: Imitation learning (IL) is a framework that learns to imitate expert behavior from demonstrations. Recently, IL shows promising results on high dimensional and control tasks. However, IL typically suffers from sample inefficiency in terms of environment interaction, which severely limits their application to simulated domains. In industrial applications, learner usually have a high interaction cost, the more interactions with environment, the more damage it causes to the environment and the learner itself. In this article, we make an effort to improve sample efficiency by introducing a novel scheme of inverse reinforcement learning. Our method, which we call \textit{Model Reward Function Based Imitation Learning} (MRFIL), uses an ensemble dynamic model as a reward function, what is trained with expert demonstrations. The key idea is to provide the agent with an incentive to match the demonstrations over a long horizon, by providing a positive reward upon encountering states in line with the expert demonstration distribution. In addition, we demonstrate the convergence guarantee for new objective function. Experimental results show that our algorithm reaches the competitive performance and significantly reducing the environment interactions compared to IL methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.