Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Effect of noise suppression losses on speech distortion and ASR performance (2111.11606v1)

Published 23 Nov 2021 in eess.AS and cs.SD

Abstract: Deep learning based speech enhancement has made rapid development towards improving quality, while models are becoming more compact and usable for real-time on-the-edge inference. However, the speech quality scales directly with the model size, and small models are often still unable to achieve sufficient quality. Furthermore, the introduced speech distortion and artifacts greatly harm speech quality and intelligibility, and often significantly degrade automatic speech recognition (ASR) rates. In this work, we shed light on the success of the spectral complex compressed mean squared error (MSE) loss, and how its magnitude and phase-aware terms are related to the speech distortion vs. noise reduction trade off. We further investigate integrating pre-trained reference-less predictors for mean opinion score (MOS) and word error rate (WER), and pre-trained embeddings on ASR and sound event detection. Our analyses reveal that none of the pre-trained networks added significant performance over the strong spectral loss.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.