Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 91 tok/s
Gemini 3.0 Pro 55 tok/s
Gemini 2.5 Flash 173 tok/s Pro
Kimi K2 194 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Testing thresholds for high-dimensional sparse random geometric graphs (2111.11316v1)

Published 22 Nov 2021 in math.PR, cs.DM, and math.CO

Abstract: In the random geometric graph model $\mathsf{Geo}_d(n,p)$, we identify each of our $n$ vertices with an independently and uniformly sampled vector from the $d$-dimensional unit sphere, and we connect pairs of vertices whose vectors are sufficiently close'', such that the marginal probability of an edge is $p$. We investigate the problem of testing for this latent geometry, or in other words, distinguishing an Erd\H{o}s-R\'enyi graph $\mathsf{G}(n, p)$ from a random geometric graph $\mathsf{Geo}_d(n, p)$. It is not too difficult to show that if $d\to \infty$ while $n$ is held fixed, the two distributions become indistinguishable; we wish to understand how fast $d$ must grow as a function of $n$ for indistinguishability to occur. When $p = \frac{\alpha}{n}$ for constant $\alpha$, we prove that if $d \ge \mathrm{polylog} n$, the total variation distance between the two distributions is close to $0$; this improves upon the best previous bound of Brennan, Bresler, and Nagaraj (2020), which required $d \gg n^{3/2}$, and further our result is nearly tight, resolving a conjecture of Bubeck, Ding, Eldan, \& R\'{a}cz (2016) up to logarithmic factors. We also obtain improved upper bounds on the statistical indistinguishability thresholds in $d$ for the full range of $p$ satisfying $\frac{1}{n}\le p\le \frac{1}{2}$, improving upon the previous bounds by polynomial factors. Our analysis uses the Belief Propagation algorithm to characterize the distributions of (subsets of) the random vectors {\em conditioned on producing a particular graph}. In this sense, our analysis is connected to thecavity method'' from statistical physics. To analyze this process, we rely on novel sharp estimates for the area of the intersection of a random sphere cap with an arbitrary subset of the sphere, which we prove using optimal transport maps and entropy-transport inequalities on the unit sphere.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.