Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Homomorphism Tensors and Linear Equations (2111.11313v4)

Published 22 Nov 2021 in math.CO and cs.DM

Abstract: Lov\'asz (1967) showed that two graphs $G$ and $H$ are isomorphic if and only if they are homomorphism indistinguishable over the class of all graphs, i.e. for every graph $F$, the number of homomorphisms from $F$ to $G$ equals the number of homomorphisms from $F$ to $H$. Recently, homomorphism indistinguishability over restricted classes of graphs such as bounded treewidth, bounded treedepth and planar graphs, has emerged as a surprisingly powerful framework for capturing diverse equivalence relations on graphs arising from logical equivalence and algebraic equation systems. In this paper, we provide a unified algebraic framework for such results by examining the linear-algebraic and representation-theoretic structure of tensors counting homomorphisms from labelled graphs. The existence of certain linear transformations between such homomorphism tensor subspaces can be interpreted both as homomorphism indistinguishability over a graph class and as feasibility of an equational system. Following this framework, we obtain characterisations of homomorphism indistinguishability over several natural graph classes, namely trees of bounded degree and graphs of bounded pathwidth, answering a question of Dell et al. (2018), and graphs of bounded treedepth.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.