Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 166 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Learning PSD-valued functions using kernel sums-of-squares (2111.11306v2)

Published 22 Nov 2021 in stat.ML and cs.LG

Abstract: Shape constraints such as positive semi-definiteness (PSD) for matrices or convexity for functions play a central role in many applications in machine learning and sciences, including metric learning, optimal transport, and economics. Yet, very few function models exist that enforce PSD-ness or convexity with good empirical performance and theoretical guarantees. In this paper, we introduce a kernel sum-of-squares model for functions that take values in the PSD cone, which extends kernel sums-of-squares models that were recently proposed to encode non-negative scalar functions. We provide a representer theorem for this class of PSD functions, show that it constitutes a universal approximator of PSD functions, and derive eigenvalue bounds in the case of subsampled equality constraints. We then apply our results to modeling convex functions, by enforcing a kernel sum-of-squares representation of their Hessian, and show that any smooth and strongly convex function may be thus represented. Finally, we illustrate our methods on a PSD matrix-valued regression task, and on scalar-valued convex regression.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.