Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Arithmetic Autocorrelation of Binary $m$-Sequences (2111.11176v2)

Published 9 Nov 2021 in cs.IT and math.IT

Abstract: An $m$-sequence is the one of the largest period among those produced by a linear feedback shift register. It possesses several desirable features of pseudorandomness such as balance, uniform pattern distribution and ideal autocorrelation for applications to communications. However, it also possesses undesirable features such as low linear complexity. Here we prove a nontrivial upper bound on its arithmetic autocorrelation, another figure of merit introduced by Mandelbaum for error-correcting codes and later investigated by Goresky and Klapper for FCSRs. The upper bound is close to half of the period and hence rather large, which gives an undesirable feature.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.