Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Case-based off-policy policy evaluation using prototype learning (2111.11113v1)

Published 22 Nov 2021 in cs.LG

Abstract: Importance sampling (IS) is often used to perform off-policy policy evaluation but is prone to several issues, especially when the behavior policy is unknown and must be estimated from data. Significant differences between the target and behavior policies can result in uncertain value estimates due to, for example, high variance and non-evaluated actions. If the behavior policy is estimated using black-box models, it can be hard to diagnose potential problems and to determine for which inputs the policies differ in their suggested actions and resulting values. To address this, we propose estimating the behavior policy for IS using prototype learning. We apply this approach in the evaluation of policies for sepsis treatment, demonstrating how the prototypes give a condensed summary of differences between the target and behavior policies while retaining an accuracy comparable to baseline estimators. We also describe estimated values in terms of the prototypes to better understand which parts of the target policies have the most impact on the estimates. Using a simulator, we study the bias resulting from restricting models to use prototypes.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.