Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bayesian Inversion of Log-normal Eikonal Equations (2111.11087v3)

Published 22 Nov 2021 in math.NA and cs.NA

Abstract: We study the Bayesian inverse problem for inferring the log-normal slowness function of the eikonal equation given noisy observation data on its solution at a set of spatial points. We study approximation of the posterior probability measure by solving the truncated eikonal equation, which contains only a finite number of terms in the Karhunen-Loeve expansion of the slowness function, by the Fast Marching Method. The error of this approximation in the Hellinger metric is deduced in terms of the truncation level of the slowness and the grid size in the Fast Marching Method resolution. It is well known that the plain Markov Chain Monte Carlo procedure for sampling the posterior probability is highly expensive. We develop and justify the convergence of a Multilevel Markov Chain Monte Carlo method. Using the heap sort procedure in solving the forward eikonal equation by the Fast Marching Method, our Multilevel Markov Chain Monte Carlo method achieves a prescribed level of accuracy for approximating the posterior expectation of quantities of interest, requiring only an essentially optimal level of complexity. Numerical examples confirm the theoretical results.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube