Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FedCV: A Federated Learning Framework for Diverse Computer Vision Tasks (2111.11066v1)

Published 22 Nov 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Federated Learning (FL) is a distributed learning paradigm that can learn a global or personalized model from decentralized datasets on edge devices. However, in the computer vision domain, model performance in FL is far behind centralized training due to the lack of exploration in diverse tasks with a unified FL framework. FL has rarely been demonstrated effectively in advanced computer vision tasks such as object detection and image segmentation. To bridge the gap and facilitate the development of FL for computer vision tasks, in this work, we propose a federated learning library and benchmarking framework, named FedCV, to evaluate FL on the three most representative computer vision tasks: image classification, image segmentation, and object detection. We provide non-I.I.D. benchmarking datasets, models, and various reference FL algorithms. Our benchmark study suggests that there are multiple challenges that deserve future exploration: centralized training tricks may not be directly applied to FL; the non-I.I.D. dataset actually downgrades the model accuracy to some degree in different tasks; improving the system efficiency of federated training is challenging given the huge number of parameters and the per-client memory cost. We believe that such a library and benchmark, along with comparable evaluation settings, is necessary to make meaningful progress in FL on computer vision tasks. FedCV is publicly available: https://github.com/FedML-AI/FedCV.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.