Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Dense Uncertainty Estimation via an Ensemble-based Conditional Latent Variable Model (2111.11055v1)

Published 22 Nov 2021 in cs.CV

Abstract: Uncertainty estimation has been extensively studied in recent literature, which can usually be classified as aleatoric uncertainty and epistemic uncertainty. In current aleatoric uncertainty estimation frameworks, it is often neglected that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model. Since the oracle model is inaccessible in most cases, we propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation. Further, we show a trivial solution in the dual-head based heteroscedastic aleatoric uncertainty estimation framework and introduce a new uncertainty consistency loss to avoid it. For epistemic uncertainty estimation, we argue that the internal variable in a conditional latent variable model is another source of epistemic uncertainty to model the predictive distribution and explore the limited knowledge about the hidden true model. We validate our observation on a dense prediction task, i.e., camouflaged object detection. Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube