Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Contrast-reconstruction Representation Learning for Self-supervised Skeleton-based Action Recognition (2111.11051v2)

Published 22 Nov 2021 in cs.CV

Abstract: Skeleton-based action recognition is widely used in varied areas, e.g., surveillance and human-machine interaction. Existing models are mainly learned in a supervised manner, thus heavily depending on large-scale labeled data which could be infeasible when labels are prohibitively expensive. In this paper, we propose a novel Contrast-Reconstruction Representation Learning network (CRRL) that simultaneously captures postures and motion dynamics for unsupervised skeleton-based action recognition. It mainly consists of three parts: Sequence Reconstructor, Contrastive Motion Learner, and Information Fuser. The Sequence Reconstructor learns representation from skeleton coordinate sequence via reconstruction, thus the learned representation tends to focus on trivial postural coordinates and be hesitant in motion learning. To enhance the learning of motions, the Contrastive Motion Learner performs contrastive learning between the representations learned from coordinate sequence and additional velocity sequence, respectively. Finally, in the Information Fuser, we explore varied strategies to combine the Sequence Reconstructor and Contrastive Motion Learner, and propose to capture postures and motions simultaneously via a knowledge-distillation based fusion strategy that transfers the motion learning from the Contrastive Motion Learner to the Sequence Reconstructor. Experimental results on several benchmarks, i.e., NTU RGB+D 60, NTU RGB+D 120, CMU mocap, and NW-UCLA, demonstrate the promise of the proposed CRRL method by far outperforming state-of-the-art approaches.

Citations (37)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube