Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Segment-level Semantics for Online Phase Recognition from Surgical Videos (2111.11044v3)

Published 22 Nov 2021 in cs.CV

Abstract: Automatic surgical phase recognition plays a vital role in robot-assisted surgeries. Existing methods ignored a pivotal problem that surgical phases should be classified by learning segment-level semantics instead of solely relying on frame-wise information. This paper presents a segment-attentive hierarchical consistency network (SAHC) for surgical phase recognition from videos. The key idea is to extract hierarchical high-level semantic-consistent segments and use them to refine the erroneous predictions caused by ambiguous frames. To achieve it, we design a temporal hierarchical network to generate hierarchical high-level segments. Then, we introduce a hierarchical segment-frame attention module to capture relations between the low-level frames and high-level segments. By regularizing the predictions of frames and their corresponding segments via a consistency loss, the network can generate semantic-consistent segments and then rectify the misclassified predictions caused by ambiguous low-level frames. We validate SAHC on two public surgical video datasets, i.e., the M2CAI16 challenge dataset and the Cholec80 dataset. Experimental results show that our method outperforms previous state-of-the-arts and ablation studies prove the effectiveness of our proposed modules. Our code has been released at: https://github.com/xmed-lab/SAHC.

Citations (26)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.