Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

WalkingTime: Dynamic Graph Embedding Using Temporal-Topological Flows (2111.10928v1)

Published 22 Nov 2021 in cs.LG and cs.SI

Abstract: Increased attention has been paid over the last four years to dynamic network embedding. Existing dynamic embedding methods, however, consider the problem as limited to the evolution of a topology over a sequence of global, discrete states. We propose a novel embedding algorithm, WalkingTime, based on a fundamentally different handling of time, allowing for the local consideration of continuously occurring phenomena; while others consider global time-steps to be first-order citizens of the dynamic environment, we hold flows comprised of temporally and topologically local interactions as our primitives, without any discretization or alignment of time-related attributes being necessary. Keywords: dynamic networks , representation learning , dynamic graph embedding , time-respecting paths , temporal-topological flows , temporal random walks , temporal networks , real-attributed knowledge graphs , streaming graphs , online networks , asynchronous graphs , asynchronous networks , graph algorithms , deep learning , network analysis , datamining , network science

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.