Papers
Topics
Authors
Recent
2000 character limit reached

Multiscale entropic regularization for MTS on general metric spaces (2111.10908v1)

Published 21 Nov 2021 in cs.DS and math.MG

Abstract: We present an $O((\log n)2)$-competitive algorithm for metrical task systems (MTS) on any $n$-point metric space that is also $1$-competitive for service costs. This matches the competitive ratio achieved by Bubeck, Cohen, Lee, and Lee (2019) and the refined competitive ratios obtained by Coester and Lee (2019). Those algorithms work by first randomly embedding the metric space into an ultrametric and then solving MTS there. In contrast, our algorithm is cast as regularized gradient descent where the regularizer is a multiscale metric entropy defined directly on the metric space. This answers an open question of Bubeck (Highlights of Algorithms, 2019).

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.