Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Local Linearity and Double Descent in Catastrophic Overfitting (2111.10754v1)

Published 21 Nov 2021 in cs.LG

Abstract: Catastrophic overfitting is a phenomenon observed during Adversarial Training (AT) with the Fast Gradient Sign Method (FGSM) where the test robustness steeply declines over just one epoch in the training stage. Prior work has attributed this loss in robustness to a sharp decrease in $\textit{local linearity}$ of the neural network with respect to the input space, and has demonstrated that introducing a local linearity measure as a regularization term prevents catastrophic overfitting. Using a simple neural network architecture, we experimentally demonstrate that maintaining high local linearity might be $\textit{sufficient}$ to prevent catastrophic overfitting but is not $\textit{necessary.}$ Further, inspired by Parseval networks, we introduce a regularization term to AT with FGSM to make the weight matrices of the network orthogonal and study the connection between orthogonality of the network weights and local linearity. Lastly, we identify the $\textit{double descent}$ phenomenon during the adversarial training process.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.