Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming (2111.10698v2)

Published 20 Nov 2021 in cs.LG and cs.AI

Abstract: Graph representation learning (GRL) is critical for graph-structured data analysis. However, most of the existing graph neural networks (GNNs) heavily rely on labeling information, which is normally expensive to obtain in the real world. Although some existing works aim to effectively learn graph representations in an unsupervised manner, they suffer from certain limitations, such as the heavy reliance on monotone contrastiveness and limited scalability. To overcome the aforementioned problems, we introduce a novel self-supervised graph representation learning algorithm via Graph Contrastive Adjusted Zooming, namely G-Zoom, to learn node representations by leveraging the proposed adjusted zooming scheme. Specifically, this mechanism enables G-Zoom to explore and extract self-supervision signals from a graph from multiple scales: micro (i.e., node-level), meso (i.e., neighborhood-level), and macro (i.e., subgraph-level). Firstly, we generate two augmented views of the input graph via two different graph augmentations. Then, we establish three different contrastiveness on the above three scales progressively, from node, neighboring, to subgraph level, where we maximize the agreement between graph representations across scales. While we can extract valuable clues from a given graph on the micro and macro perspectives, the neighboring-level contrastiveness offers G-Zoom the capability of a customizable option based on our adjusted zooming scheme to manually choose an optimal viewpoint that lies between the micro and macro perspectives to better understand the graph data. Additionally, to make our model scalable to large graphs, we employ a parallel graph diffusion approach to decouple model training from the graph size. We have conducted extensive experiments on real-world datasets, and the results demonstrate that our proposed model outperforms state-of-the-art methods consistently.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.