Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Simple End-to-end Deep Learning Model for CDR-H3 Loop Structure Prediction (2111.10656v2)

Published 20 Nov 2021 in q-bio.BM, cs.AI, and cs.LG

Abstract: Predicting a structure of an antibody from its sequence is important since it allows for a better design process of synthetic antibodies that play a vital role in the health industry. Most of the structure of an antibody is conservative. The most variable and hard-to-predict part is the third complementarity-determining region of the antibody heavy chain (CDR H3). Lately, deep learning has been employed to solve the task of CDR H3 prediction. However, current state-of-the-art methods are not end-to-end, but rather they output inter-residue distances and orientations to the RosettaAntibody package that uses this additional information alongside statistical and physics-based methods to predict the 3D structure. This does not allow a fast screening process and, therefore, inhibits the development of targeted synthetic antibodies. In this work, we present an end-to-end model to predict CDR H3 loop structure, that performs on par with state-of-the-art methods in terms of accuracy but an order of magnitude faster. We also raise an issue with a commonly used RosettaAntibody benchmark that leads to data leaks, i.e., the presence of identical sequences in the train and test datasets.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube