Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Reasonable Effectiveness of Random Weighting: A Litmus Test for Multi-Task Learning (2111.10603v2)

Published 20 Nov 2021 in cs.LG

Abstract: Multi-Task Learning (MTL) has achieved success in various fields. However, how to balance different tasks to achieve good performance is a key problem. To achieve the task balancing, there are many works to carefully design dynamical loss/gradient weighting strategies but the basic random experiments are ignored to examine their effectiveness. In this paper, we propose the Random Weighting (RW) methods, including Random Loss Weighting (RLW) and Random Gradient Weighting (RGW), where an MTL model is trained with random loss/gradient weights sampled from a distribution. To show the effectiveness and necessity of RW methods, theoretically we analyze the convergence of RW and reveal that RW has a higher probability to escape local minima, resulting in better generalization ability. Empirically, we extensively evaluate the proposed RW methods to compare with twelve state-of-the-art methods on five image datasets and two multilingual problems from the XTREME benchmark to show RW methods can achieve comparable performance with state-of-the-art baselines. Therefore, we think that the RW methods are important baselines for MTL and should attract more attentions.

Citations (77)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.