Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Temporal-MPI: Enabling Multi-Plane Images for Dynamic Scene Modelling via Temporal Basis Learning (2111.10533v2)

Published 20 Nov 2021 in cs.CV

Abstract: Novel view synthesis of static scenes has achieved remarkable advancements in producing photo-realistic results. However, key challenges remain for immersive rendering of dynamic scenes. One of the seminal image-based rendering method, the multi-plane image (MPI), produces high novel-view synthesis quality for static scenes. But modelling dynamic contents by MPI is not studied. In this paper, we propose a novel Temporal-MPI representation which is able to encode the rich 3D and dynamic variation information throughout the entire video as compact temporal basis and coefficients jointly learned. Time-instance MPI for rendering can be generated efficiently using mini-seconds by linear combinations of temporal basis and coefficients from Temporal-MPI. Thus novel-views at arbitrary time-instance will be able to be rendered via Temporal-MPI in real-time with high visual quality. Our method is trained and evaluated on Nvidia Dynamic Scene Dataset. We show that our proposed Temporal- MPI is much faster and more compact compared with other state-of-the-art dynamic scene modelling methods.

Citations (13)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)