Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

FAMINet: Learning Real-time Semi-supervised Video Object Segmentation with Steepest Optimized Optical Flow (2111.10531v1)

Published 20 Nov 2021 in cs.CV

Abstract: Semi-supervised video object segmentation (VOS) aims to segment a few moving objects in a video sequence, where these objects are specified by annotation of first frame. The optical flow has been considered in many existing semi-supervised VOS methods to improve the segmentation accuracy. However, the optical flow-based semi-supervised VOS methods cannot run in real time due to high complexity of optical flow estimation. A FAMINet, which consists of a feature extraction network (F), an appearance network (A), a motion network (M), and an integration network (I), is proposed in this study to address the abovementioned problem. The appearance network outputs an initial segmentation result based on static appearances of objects. The motion network estimates the optical flow via very few parameters, which are optimized rapidly by an online memorizing algorithm named relaxed steepest descent. The integration network refines the initial segmentation result using the optical flow. Extensive experiments demonstrate that the FAMINet outperforms other state-of-the-art semi-supervised VOS methods on the DAVIS and YouTube-VOS benchmarks, and it achieves a good trade-off between accuracy and efficiency. Our code is available at https://github.com/liuziyang123/FAMINet.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.