Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Distributed Parallel Optimization Algorithm via Alternating Direction Method of Multipliers (2111.10494v1)

Published 20 Nov 2021 in math.OC, cs.SY, and eess.SY

Abstract: Alternating Direction Method of Multipliers (ADMM) algorithm has been widely adopted for solving the distributed optimization problem (DOP). In this paper, a new distributed parallel ADMM algorithm is proposed, which allows the agents to update their local states and dual variables in a completely distributed and parallel manner by modifying the existing distributed sequential ADMM. Moreover, the updating rules and storage method for variables are illustrated. It is shown that all the agents can reach a consensus by asymptotically converging to the optimal solution. Besides, the global cost function will converge to the optimal value at a rate of O(1/k). Simulation results on a numerical example are given to show the effectiveness of the proposed algorithm.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.