Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A Distributed Parallel Optimization Algorithm via Alternating Direction Method of Multipliers (2111.10494v1)

Published 20 Nov 2021 in math.OC, cs.SY, and eess.SY

Abstract: Alternating Direction Method of Multipliers (ADMM) algorithm has been widely adopted for solving the distributed optimization problem (DOP). In this paper, a new distributed parallel ADMM algorithm is proposed, which allows the agents to update their local states and dual variables in a completely distributed and parallel manner by modifying the existing distributed sequential ADMM. Moreover, the updating rules and storage method for variables are illustrated. It is shown that all the agents can reach a consensus by asymptotically converging to the optimal solution. Besides, the global cost function will converge to the optimal value at a rate of O(1/k). Simulation results on a numerical example are given to show the effectiveness of the proposed algorithm.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.