Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 187 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Global and Local Alignment Networks for Unpaired Image-to-Image Translation (2111.10346v1)

Published 19 Nov 2021 in cs.CV

Abstract: The goal of unpaired image-to-image translation is to produce an output image reflecting the target domain's style while keeping unrelated contents of the input source image unchanged. However, due to the lack of attention to the content change in existing methods, the semantic information from source images suffers from degradation during translation. In the paper, to address this issue, we introduce a novel approach, Global and Local Alignment Networks (GLA-Net). The global alignment network aims to transfer the input image from the source domain to the target domain. To effectively do so, we learn the parameters (mean and standard deviation) of multivariate Gaussian distributions as style features by using an MLP-Mixer based style encoder. To transfer the style more accurately, we employ an adaptive instance normalization layer in the encoder, with the parameters of the target multivariate Gaussian distribution as input. We also adopt regularization and likelihood losses to further reduce the domain gap and produce high-quality outputs. Additionally, we introduce a local alignment network, which employs a pretrained self-supervised model to produce an attention map via a novel local alignment loss, ensuring that the translation network focuses on relevant pixels. Extensive experiments conducted on five public datasets demonstrate that our method effectively generates sharper and more realistic images than existing approaches. Our code is available at https://github.com/ygjwd12345/GLANet.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com

GitHub

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube