Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Application of Zig-Zag Sampler in Sequential Markov Chain Monte Carlo (2111.10210v1)

Published 18 Nov 2021 in stat.CO, cs.LG, stat.AP, and stat.ML

Abstract: Particle filtering methods are widely applied in sequential state estimation within nonlinear non-Gaussian state space model. However, the traditional particle filtering methods suffer the weight degeneracy in the high-dimensional state space model. Currently, there are many methods to improve the performance of particle filtering in high-dimensional state space model. Among these, the more advanced method is to construct the Sequential Makov chian Monte Carlo (SMCMC) framework by implementing the Composite Metropolis-Hasting (MH) Kernel. In this paper, we proposed to discrete the Zig-Zag Sampler and apply the Zig-Zag Sampler in the refinement stage of the Composite MH Kernel within the SMCMC framework which is implemented the invertible particle flow in the joint draw stage. We evaluate the performance of proposed method through numerical experiments of the challenging complex high-dimensional filtering examples. Nemurical experiments show that in high-dimensional state estimation examples, the proposed method improves estimation accuracy and increases the acceptance ratio compared with state-of-the-art filtering methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.