Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Multimodal Emotion Recognition with High-level Speech and Text Features (2111.10202v1)

Published 29 Sep 2021 in eess.AS, cs.CL, and cs.SD

Abstract: Automatic emotion recognition is one of the central concerns of the Human-Computer Interaction field as it can bridge the gap between humans and machines. Current works train deep learning models on low-level data representations to solve the emotion recognition task. Since emotion datasets often have a limited amount of data, these approaches may suffer from overfitting, and they may learn based on superficial cues. To address these issues, we propose a novel cross-representation speech model, inspired by disentanglement representation learning, to perform emotion recognition on wav2vec 2.0 speech features. We also train a CNN-based model to recognize emotions from text features extracted with Transformer-based models. We further combine the speech-based and text-based results with a score fusion approach. Our method is evaluated on the IEMOCAP dataset in a 4-class classification problem, and it surpasses current works on speech-only, text-only, and multimodal emotion recognition.

Citations (62)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.