Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Randomized Algorithms for Monotone Submodular Function Maximization on the Integer Lattice (2111.10175v1)

Published 19 Nov 2021 in cs.DS, cs.AI, cs.LG, and math.OC

Abstract: Optimization problems with set submodular objective functions have many real-world applications. In discrete scenarios, where the same item can be selected more than once, the domain is generalized from a 2-element set to a bounded integer lattice. In this work, we consider the problem of maximizing a monotone submodular function on the bounded integer lattice subject to a cardinality constraint. In particular, we focus on maximizing DR-submodular functions, i.e., functions defined on the integer lattice that exhibit the diminishing returns property. Given any epsilon > 0, we present a randomized algorithm with probabilistic guarantees of O(1 - 1/e - epsilon) approximation, using a framework inspired by a Stochastic Greedy algorithm developed for set submodular functions by Mirzasoleiman et al. We then show that, on synthetic DR-submodular functions, applying our proposed algorithm on the integer lattice is faster than the alternatives, including reducing a target problem to the set domain and then applying the fastest known set submodular maximization algorithm.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.