Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Lexicon-based Methods vs. BERT for Text Sentiment Analysis (2111.10097v1)

Published 19 Nov 2021 in cs.CL

Abstract: The performance of sentiment analysis methods has greatly increased in recent years. This is due to the use of various models based on the Transformer architecture, in particular BERT. However, deep neural network models are difficult to train and poorly interpretable. An alternative approach is rule-based methods using sentiment lexicons. They are fast, require no training, and are well interpreted. But recently, due to the widespread use of deep learning, lexicon-based methods have receded into the background. The purpose of the article is to study the performance of the SO-CAL and SentiStrength lexicon-based methods, adapted for the Russian language. We have tested these methods, as well as the RuBERT neural network model, on 16 text corpora and have analyzed their results. RuBERT outperforms both lexicon-based methods on average, but SO-CAL surpasses RuBERT for four corpora out of 16.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.