Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Explainable predictions of different machine learning algorithms used to predict Early Stage diabetes (2111.09939v1)

Published 18 Nov 2021 in cs.LG and cs.AI

Abstract: Machine Learning and Artificial Intelligence can be widely used to diagnose chronic diseases so that necessary precautionary treatment can be done in critical time. Diabetes Mellitus which is one of the major diseases can be easily diagnosed by several Machine Learning algorithms. Early stage diagnosis is crucial to prevent dangerous consequences. In this paper we have made a comparative analysis of several machine learning algorithms viz. Random Forest, Decision Tree, Artificial Neural Networks, K Nearest Neighbor, Support Vector Machine, and XGBoost along with feature attribution using SHAP to identify the most important feature in predicting the diabetes on a dataset collected from Sylhet Hospital. As per the experimental results obtained, the Random Forest algorithm has outperformed all the other algorithms with an accuracy of 99 percent on this particular dataset.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.