Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quality and Cost Trade-offs in Passage Re-ranking Task (2111.09927v1)

Published 18 Nov 2021 in cs.IR and cs.CL

Abstract: Deep learning models named transformers achieved state-of-the-art results in a vast majority of NLP tasks at the cost of increased computational complexity and high memory consumption. Using the transformer model in real-time inference becomes a major challenge when implemented in production, because it requires expensive computational resources. The more executions of a transformer are needed the lower the overall throughput is, and switching to the smaller encoders leads to the decrease of accuracy. Our paper is devoted to the problem of how to choose the right architecture for the ranking step of the information retrieval pipeline, so that the number of required calls of transformer encoder is minimal with the maximum achievable quality of ranking. We investigated several late-interaction models such as Colbert and Poly-encoder architectures along with their modifications. Also, we took care of the memory footprint of the search index and tried to apply the learning-to-hash method to binarize the output vectors from the transformer encoders. The results of the evaluation are provided using TREC 2019-2021 and MS Marco dev datasets.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.