Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Evolutionary Algorithm for Graph Coloring Problem (2111.09743v1)

Published 17 Nov 2021 in cs.NE

Abstract: The graph coloring problem (GCP) is one of the most studied NP-HARD problems in computer science. Given a graph , the task is to assign a color to all vertices such that no vertices sharing an edge receive the same color and that the number of used colors, is minimal. Different heuristic, meta-heuristic, machine learning and hybrid solution methods have been applied to obtain the solution. To solve this problem we use mutation of evolutionary algorithm. For this purpose we introduce binary encoding for Graph Coloring Problem. This binary encoding help us for mutation, evaluate, immune system and merge color easily and also reduce coloring dynamically. In the traditional evolutionary algorithm (EA) for graph coloring, k-coloring approach is used and the EA is run repeatedly until the lowest possible is reached. In our paper, we start with the theoretical upper bound of chromatic number, that is, maximum out-degree + 1 and in the process of evolution some of the colors are made unused to dynamically reduce the number of color in every generation. We test few standard DIMACS benchmark and compare resent paper. Maximum results are same as expected chromatic color and few data sets are larger than expected chromatic number

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.