Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Sentiment Analysis of Microblogging dataset on Coronavirus Pandemic (2111.09275v1)

Published 17 Nov 2021 in cs.SI and cs.LG

Abstract: Sentiment analysis can largely influence the people to get the update of the current situation. Coronavirus (COVID-19) is a contagious illness caused by the coronavirus 2 that causes severe respiratory symptoms. The lives of millions have continued to be affected by this pandemic, several countries have resorted to a full lockdown. During this lockdown, people have taken social networks to express their emotions to find a way to calm themselves down. People are spreading their sentiments through microblogging websites as one of the most preventive steps of this disease is the socialization to gain people's awareness to stay home and keep their distance when they are outside home. Twitter is a popular online social media platform for exchanging ideas. People can post their different sentiments, which can be used to aware people. But, some people want to spread fake news to frighten the people. So, it is necessary to identify the positive, negative, and neutral thoughts so that the positive opinions can be delivered to the mass people for spreading awareness to the people. Moreover, a huge volume of data is floating on Twitter. So, it is also important to identify the context of the dataset. In this paper, we have analyzed the Twitter dataset for evaluating the sentiment using several machine learning algorithms. Later, we have found out the context learning of the dataset based on the sentiments.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube