Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Universal Inference Meets Random Projections: A Scalable Test for Log-concavity (2111.09254v4)

Published 17 Nov 2021 in stat.ME, cs.LG, math.ST, and stat.TH

Abstract: Shape constraints yield flexible middle grounds between fully nonparametric and fully parametric approaches to modeling distributions of data. The specific assumption of log-concavity is motivated by applications across economics, survival modeling, and reliability theory. However, there do not currently exist valid tests for whether the underlying density of given data is log-concave. The recent universal inference methodology provides a valid test. The universal test relies on maximum likelihood estimation (MLE), and efficient methods already exist for finding the log-concave MLE. This yields the first test of log-concavity that is provably valid in finite samples in any dimension, for which we also establish asymptotic consistency results. Empirically, we find that a random projections approach that converts the d-dimensional testing problem into many one-dimensional problems can yield high power, leading to a simple procedure that is statistically and computationally efficient.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com