Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Preference Communication in Multi-Objective Normal-Form Games (2111.09191v2)

Published 17 Nov 2021 in cs.GT, cs.LG, and cs.MA

Abstract: We consider preference communication in two-player multi-objective normal-form games. In such games, the payoffs resulting from joint actions are vector-valued. Taking a utility-based approach, we assume there exists a utility function for each player which maps vectors to scalar utilities and consider agents that aim to maximise the utility of expected payoff vectors. As agents typically do not know their opponent's utility function or strategy, they must learn policies to interact with each other. Inspired by Stackelberg games, we introduce four novel preference communication protocols to aid agents in arriving at adequate solutions. Each protocol describes a specific approach for one agent to communicate preferences over their actions and how another agent responds. Additionally, to study when communication emerges, we introduce a communication protocol where agents must learn when to communicate. These protocols are subsequently evaluated on a set of five benchmark games against baseline agents that do not communicate. We find that preference communication can alter the learning process and lead to the emergence of cyclic policies which had not been previously observed in this setting. We further observe that the resulting policies can heavily depend on the characteristics of the game that is played. Lastly, we find that communication naturally emerges in both cooperative and self-interested settings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.