Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Outlier Detection as Instance Selection Method for Feature Selection in Time Series Classification (2111.09127v1)

Published 16 Nov 2021 in cs.LG

Abstract: In order to allow machine learning algorithms to extract knowledge from raw data, these data must first be cleaned, transformed, and put into machine-appropriate form. These often very time-consuming phase is referred to as preprocessing. An important step in the preprocessing phase is feature selection, which aims at better performance of prediction models by reducing the amount of features of a data set. Within these datasets, instances of different events are often imbalanced, which means that certain normal events are over-represented while other rare events are very limited. Typically, these rare events are of special interest since they have more discriminative power than normal events. The aim of this work was to filter instances provided to feature selection methods for these rare instances, and thus positively influence the feature selection process. In the course of this work, we were able to show that this filtering has a positive effect on the performance of classification models and that outlier detection methods are suitable for this filtering. For some data sets, the resulting increase in performance was only a few percent, but for other datasets, we were able to achieve increases in performance of up to 16 percent. This work should lead to the improvement of the predictive models and the better interpretability of feature selection in the course of the preprocessing phase. In the spirit of open science and to increase transparency within our research field, we have made all our source code and the results of our experiments available in a publicly available repository.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)